Author:
Hou Zhichao,Leng Jiacheng,Yu Jiating,Xia Zheng,Wu Ling-Yun
Abstract
Abstract
Background
In the field of biology and medicine, the interpretability and accuracy are both important when designing predictive models. The interpretability of many machine learning models such as neural networks is still a challenge. Recently, many researchers utilized prior information such as biological pathways to develop neural networks-based methods, so as to provide some insights and interpretability for the models. However, the prior biological knowledge may be incomplete and there still exists some unknown information to be explored.
Results
We proposed a novel method, named PathExpSurv, to gain an insight into the black-box model of neural network for cancer survival analysis. We demonstrated that PathExpSurv could not only incorporate the known prior information into the model, but also explore the unknown possible expansion to the existing pathways. We performed downstream analyses based on the expanded pathways and successfully identified some key genes associated with the diseases and original pathways.
Conclusions
Our proposed PathExpSurv is a novel, effective and interpretable method for survival analysis. It has great utility and value in medical diagnosis and offers a promising framework for biological research.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献