Drug repurposing and prediction of multiple interaction types via graph embedding

Author:

Amiri Souri E.,Chenoweth A.,Karagiannis S. N.,Tsoka S.

Abstract

Abstract Background Finding drugs that can interact with a specific target to induce a desired therapeutic outcome is key deliverable in drug discovery for targeted treatment. Therefore, both identifying new drug–target links, as well as delineating the type of drug interaction, are important in drug repurposing studies. Results A computational drug repurposing approach was proposed to predict novel drug–target interactions (DTIs), as well as to predict the type of interaction induced. The methodology is based on mining a heterogeneous graph that integrates drug–drug and protein–protein similarity networks, together with verified drug-disease and protein-disease associations. In order to extract appropriate features, the three-layer heterogeneous graph was mapped to low dimensional vectors using node embedding principles. The DTI prediction problem was formulated as a multi-label, multi-class classification task, aiming to determine drug modes of action. DTIs were defined by concatenating pairs of drug and target vectors extracted from graph embedding, which were used as input to classification via gradient boosted trees, where a model is trained to predict the type of interaction. After validating the prediction ability of DT2Vec+, a comprehensive analysis of all unknown DTIs was conducted to predict the degree and type of interaction. Finally, the model was applied to propose potential approved drugs to target cancer-specific biomarkers. Conclusion DT2Vec+ showed promising results in predicting type of DTI, which was achieved via integrating and mapping triplet drug–target–disease association graphs into low-dimensional dense vectors. To our knowledge, this is the first approach that addresses prediction between drugs and targets across six interaction types.

Funder

National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) based at Guy’s and St Thomas’ NHS Foundation Trust and King's College London

Medical Research Council

Breast Cancer Now

Cancer Research UK

Cancer Research UK King’s Health Partners Centre at King’s College London

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrated ML-Based Strategy Identifies Drug Repurposing for Idiopathic Pulmonary Fibrosis;ACS Omega;2024-06-27

2. A comprehensive review of the data and knowledge graphs approaches in bioinformatics;Computer Science and Information Systems;2024

3. Drug repurposing for neurodegenerative diseases;Progress in Molecular Biology and Translational Science;2024

4. Current approaches in identification of a novel drug targets for drug repurposing;Progress in Molecular Biology and Translational Science;2024

5. The Role of Bioinformatics in Drug Discovery: A Comprehensive Overview;Drug Metabolism and Pharmacokinetics [Working Title];2023-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3