cnnLSV: detecting structural variants by encoding long-read alignment information and convolutional neural network

Author:

Ma Huidong,Zhong Cheng,Chen Danyang,He Haofa,Yang Feng

Abstract

Abstract Background Genomic structural variant detection is a significant and challenging issue in genome analysis. The existing long-read based structural variant detection methods still have space for improvement in detecting multi-type structural variants. Results In this paper, we propose a method called cnnLSV to obtain detection results with higher quality by eliminating false positives in the detection results merged from the callsets of existing methods. We design an encoding strategy for four types of structural variants to represent long-read alignment information around structural variants into images, input the images into a constructed convolutional neural network to train a filter model, and load the trained model to remove the false positives to improve the detection performance. We also eliminate mislabeled training samples in the training model phase by using principal component analysis algorithm and unsupervised clustering algorithm k-means. Experimental results on both simulated and real datasets show that our proposed method outperforms existing methods overall in detecting insertions, deletions, inversions, and duplications. The program of cnnLSV is available at https://github.com/mhuidong/cnnLSV. Conclusions The proposed cnnLSV can detect structural variants by using long-read alignment information and convolutional neural network to achieve overall higher performance, and effectively eliminate incorrectly labeled samples by using the principal component analysis and k-means algorithms in training model stage.

Funder

National Natural Science Foundation of China

Guangxi Postgraduate Innovation Plan

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3