Author:
Ma Huidong,Zhong Cheng,Chen Danyang,He Haofa,Yang Feng
Abstract
Abstract
Background
Genomic structural variant detection is a significant and challenging issue in genome analysis. The existing long-read based structural variant detection methods still have space for improvement in detecting multi-type structural variants.
Results
In this paper, we propose a method called cnnLSV to obtain detection results with higher quality by eliminating false positives in the detection results merged from the callsets of existing methods. We design an encoding strategy for four types of structural variants to represent long-read alignment information around structural variants into images, input the images into a constructed convolutional neural network to train a filter model, and load the trained model to remove the false positives to improve the detection performance. We also eliminate mislabeled training samples in the training model phase by using principal component analysis algorithm and unsupervised clustering algorithm k-means. Experimental results on both simulated and real datasets show that our proposed method outperforms existing methods overall in detecting insertions, deletions, inversions, and duplications. The program of cnnLSV is available at https://github.com/mhuidong/cnnLSV.
Conclusions
The proposed cnnLSV can detect structural variants by using long-read alignment information and convolutional neural network to achieve overall higher performance, and effectively eliminate incorrectly labeled samples by using the principal component analysis and k-means algorithms in training model stage.
Funder
National Natural Science Foundation of China
Guangxi Postgraduate Innovation Plan
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献