New statistical selection method for pleiotropic variants associated with both quantitative and qualitative traits

Author:

Kim Kipoong,Jun Tae-Hwan,Ha Bo-Keun,Wang Shuang,Sun Hokeun

Abstract

Abstract Background Identification of pleiotropic variants associated with multiple phenotypic traits has received increasing attention in genetic association studies. Overlapping genetic associations from multiple traits help to detect weak genetic associations missed by single-trait analyses. Many statistical methods were developed to identify pleiotropic variants with most of them being limited to quantitative traits when pleiotropic effects on both quantitative and qualitative traits have been observed. This is a statistically challenging problem because there does not exist an appropriate multivariate distribution to model both quantitative and qualitative data together. Alternatively, meta-analysis methods can be applied, which basically integrate summary statistics of individual variants associated with either a quantitative or a qualitative trait without accounting for correlations among genetic variants. Results We propose a new statistical selection method based on a unified selection score quantifying how a genetic variant, i.e., a pleiotropic variant associates with both quantitative and qualitative traits. In our extensive simulation studies where various types of pleiotropic effects on both quantitative and qualitative traits were considered, we demonstrated that the proposed method outperforms the existing meta-analysis methods in terms of true positive selection. We also applied the proposed method to a peanut dataset with 6 quantitative and 2 qualitative traits, and a cowpea dataset with 2 quantitative and 6 qualitative traits. We were able to detect some potentially pleiotropic variants missed by the existing methods in both analyses. Conclusions The proposed method is able to locate pleiotropic variants associated with both quantitative and qualitative traits. It has been implemented into an R package ‘UNISS’, which can be downloaded from http://github.com/statpng/uniss.

Funder

National Research Foundation of Korea

Rural Development Administration of Korea

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3