Deep semi-supervised learning ensemble framework for classifying co-mentions of human proteins and phenotypes

Author:

Pourreza Shahri Morteza,Kahanda IndikaORCID

Abstract

Abstract Background Identifying human protein-phenotype relationships has attracted researchers in bioinformatics and biomedical natural language processing due to its importance in uncovering rare and complex diseases. Since experimental validation of protein-phenotype associations is prohibitive, automated tools capable of accurately extracting these associations from the biomedical text are in high demand. However, while the manual annotation of protein-phenotype co-mentions required for training such models is highly resource-consuming, extracting millions of unlabeled co-mentions is straightforward. Results In this study, we propose a novel deep semi-supervised ensemble framework that combines deep neural networks, semi-supervised, and ensemble learning for classifying human protein-phenotype co-mentions with the help of unlabeled data. This framework allows the ability to incorporate an extensive collection of unlabeled sentence-level co-mentions of human proteins and phenotypes with a small labeled dataset to enhance overall performance. We develop PPPredSS, a prototype of our proposed semi-supervised framework that combines sophisticated language models, convolutional networks, and recurrent networks. Our experimental results demonstrate that the proposed approach provides a new state-of-the-art performance in classifying human protein-phenotype co-mentions by outperforming other supervised and semi-supervised counterparts. Furthermore, we highlight the utility of PPPredSS in powering a curation assistant system through case studies involving a group of biologists. Conclusions This article presents a novel approach for human protein-phenotype co-mention classification based on deep, semi-supervised, and ensemble learning. The insights and findings from this work have implications for biomedical researchers, biocurators, and the text mining community working on biomedical relationship extraction.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3