Drug response prediction using graph representation learning and Laplacian feature selection
-
Published:2022-12-09
Issue:S8
Volume:23
Page:
-
ISSN:1471-2105
-
Container-title:BMC Bioinformatics
-
language:en
-
Short-container-title:BMC Bioinformatics
Author:
Xie MinzhuORCID, Lei Xiaowen, Zhong Jianchen, Ouyang Jianxing, Li Guijing
Abstract
Abstract
Background
Knowing the responses of a patient to drugs is essential to make personalized medicine practical. Since the current clinical drug response experiments are time-consuming and expensive, utilizing human genomic information and drug molecular characteristics to predict drug responses is of urgent importance. Although a variety of computational drug response prediction methods have been proposed, their effectiveness is still not satisfying.
Results
In this study, we propose a method called LGRDRP (Learning Graph Representation for Drug Response Prediction) to predict cell line-drug responses. At first, LGRDRP constructs a heterogeneous network integrating multiple kinds of information: cell line miRNA expression profiles, drug chemical structure similarity, gene-gene interaction, cell line-gene interaction and known cell line-drug responses. Then, for each cell line, learning graph representation and Laplacian feature selection are combined to obtain network topology features related to the cell line. The learning graph representation method learns network topology structure features, and the Laplacian feature selection method further selects out some most important ones from them. Finally, LGRDRP trains an SVM model to predict drug responses based on the selected features of the known cell line-drug responses. Our five-fold cross-validation results show that LGRDRP is significantly superior to the art-of-the-state methods in the measures of the average area under the receiver operating characteristics curve, the average area under the precision-recall curve and the recall rate of top-k predicted sensitive cell lines.
Conclusions
Our results demonstrated that the usage of multiple types of information about cell lines and drugs, the learning graph representation method, and the Laplacian feature selection is useful to the improvement of performance in predicting drug responses. We believe that such an approach would be easily extended to similar problems such as miRNA-disease relationship inference.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference32 articles.
1. ...Costello JC, Heiser LM, Georgii E, Gonen M, Menden MP, Wang NJ, Bansal M, Ammad-ud-din M, Hintsanen P, Khan SA, Mpindi JP, Kallioniemi O, Honkela A, Aittokallio T, Wennerberg K, Community ND, Collins JJ, Gallahan D, Singer D, Saez-Rodriguez J, Kaski S, Gray JW, Stolovitzky G. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. 2014;32(12):1202–12. https://doi.org/10.1038/nbt.2877. 2. Eisenstein M. Personalized medicine: special treatment. Nature. 2014;513(7517):8–9. https://doi.org/10.1038/513S8a. 3. Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med. 2012;366(6):489–91. https://doi.org/10.1056/NEJMp1114866. 4. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR, Ramaswamy S, Futreal PA, Haber DA, Stratton MR, Benes C, McDermott U, Garnett MJ. Genomics of drug sensitivity in cancer (gdsc): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41(Database issue):955–61. https://doi.org/10.1093/nar/gks1111. 5. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi JP, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7. https://doi.org/10.1038/nature11003.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|