Drug response prediction using graph representation learning and Laplacian feature selection

Author:

Xie MinzhuORCID,Lei Xiaowen,Zhong Jianchen,Ouyang Jianxing,Li Guijing

Abstract

Abstract Background Knowing the responses of a patient to drugs is essential to make personalized medicine practical. Since the current clinical drug response experiments are time-consuming and expensive, utilizing human genomic information and drug molecular characteristics to predict drug responses is of urgent importance. Although a variety of computational drug response prediction methods have been proposed, their effectiveness is still not satisfying. Results In this study, we propose a method called LGRDRP (Learning Graph Representation for Drug Response Prediction) to predict cell line-drug responses. At first, LGRDRP constructs a heterogeneous network integrating multiple kinds of information: cell line miRNA expression profiles, drug chemical structure similarity, gene-gene interaction, cell line-gene interaction and known cell line-drug responses. Then, for each cell line, learning graph representation and Laplacian feature selection are combined to obtain network topology features related to the cell line. The learning graph representation method learns network topology structure features, and the Laplacian feature selection method further selects out some most important ones from them. Finally, LGRDRP trains an SVM model to predict drug responses based on the selected features of the known cell line-drug responses. Our five-fold cross-validation results show that LGRDRP is significantly superior to the art-of-the-state methods in the measures of the average area under the receiver operating characteristics curve, the average area under the precision-recall curve and the recall rate of top-k predicted sensitive cell lines. Conclusions Our results demonstrated that the usage of multiple types of information about cell lines and drugs, the learning graph representation method, and the Laplacian feature selection is useful to the improvement of performance in predicting drug responses. We believe that such an approach would be easily extended to similar problems such as miRNA-disease relationship inference.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference32 articles.

1. ...Costello JC, Heiser LM, Georgii E, Gonen M, Menden MP, Wang NJ, Bansal M, Ammad-ud-din M, Hintsanen P, Khan SA, Mpindi JP, Kallioniemi O, Honkela A, Aittokallio T, Wennerberg K, Community ND, Collins JJ, Gallahan D, Singer D, Saez-Rodriguez J, Kaski S, Gray JW, Stolovitzky G. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. 2014;32(12):1202–12. https://doi.org/10.1038/nbt.2877.

2. Eisenstein M. Personalized medicine: special treatment. Nature. 2014;513(7517):8–9. https://doi.org/10.1038/513S8a.

3. Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med. 2012;366(6):489–91. https://doi.org/10.1056/NEJMp1114866.

4. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR, Ramaswamy S, Futreal PA, Haber DA, Stratton MR, Benes C, McDermott U, Garnett MJ. Genomics of drug sensitivity in cancer (gdsc): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41(Database issue):955–61. https://doi.org/10.1093/nar/gks1111.

5. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi JP, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7. https://doi.org/10.1038/nature11003.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3