Analyzing postprandial metabolomics data using multiway models: a simulation study
-
Published:2024-03-04
Issue:1
Volume:25
Page:
-
ISSN:1471-2105
-
Container-title:BMC Bioinformatics
-
language:en
-
Short-container-title:BMC Bioinformatics
Author:
Li Lu,Yan Shi,Bakker Barbara M.,Hoefsloot Huub,Chawes Bo,Horner David,Rasmussen Morten A.,Smilde Age K.,Acar Evrim
Abstract
Abstract
Background
Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data.
Results
We introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups.
Conclusions
Our experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis.
Funder
Norges Forskningsråd Novo Nordisk Fonden
Publisher
Springer Science and Business Media LLC
Reference56 articles.
1. Harte AL, Varma MC, Tripathi G, McGee KC, Al-Daghri NM, Al-Attas OS, Sabico S, O’Hare JP, Ceriello A, Saravanan P, et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care. 2012;35(2):375–82. 2. Wopereis S, Stroeve JHM, Stafleu A, Bakker GCM, Burggraaf J, Erk MJ, Pellis L, Boessen R, Kardinaal AAF, Ommen B. Multi-parameter comparison of a standardized mixed meal tolerance test in healthy and type 2 diabetic subjects: the phenflex challenge. Genes Nutrit. 2017;12(21):1–14. 3. Wojczynski MK, Glasser SP, Oberman A, Kabagambe EK, Hopkins PN, Tsai MY, Straka RJ, Ordovas JM, Arnett DK. High-fat meal effect on ldl, hdl, and vldl particle size and number in the genetics of lipid-lowering drugs and diet network (goldn): an interventional study. Lipids Health Dis. 2011;10(181):1–11. 4. Lépine G, Tremblay-Franco M, Bouder S, Dimina L, Fouillet H, Mariotti F, Polakof S. Investigating the postprandial metabolome after challenge tests to assess metabolic flexibility and dysregulations associated with cardiometabolic diseases. Nutrients. 2022;14(3):472. 5. Kumar AA, Satheesh G, Vijayakumar G, Chandran M, Prabhu PR, Simon L, Kutty VR, Kartha CC, Jaleel A. Postprandial metabolism is impaired in overweight normoglycemic young adults without family history of diabetes. Sci Rep. 2020;10:353.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|