Author:
Degl’Innocenti Andrea,Meloni Gabriella,Mazzolai Barbara,Ciofani Gianni
Abstract
Abstract
Background
In most mammals, a vast array of genes coding for chemosensory receptors mediates olfaction. Odorant receptor (OR) genes generally constitute the largest multifamily (> 1100 intact members in the mouse). From the whole pool, each olfactory neuron expresses a single OR allele following poorly characterized mechanisms termed OR gene choice. OR genes are found in genomic aggregations known as clusters. Nearby enhancers, named elements, are crucial regulators of OR gene choice. Despite their importance, searching for new elements is burdensome. Other chemosensory receptor genes responsible for smell adhere to expression modalities resembling OR gene choice, and are arranged in genomic clusters — often with chromosomal linkage to OR genes. Still, no elements are known for them.
Results
Here we present an inexpensive framework aimed at predicting elements. We redefine cluster identity by focusing on multiple receptor gene families at once, and exemplify thirty — not necessarily OR-exclusive — novel candidate enhancers.
Conclusions
The pipeline we introduce could guide future in vivo work aimed at discovering/validating new elements. In addition, our study provides an updated and comprehensive classification of all genomic loci responsible for the transduction of olfactory signals in mammals.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献