Predicting weighted unobserved nodes in a regulatory network using answer set programming

Author:

Le Bars SophieORCID,Bolteau Mathieu,Bourdon Jérémie,Guziolowski Carito

Abstract

Abstract Background The impact of a perturbation, over-expression, or repression of a key node on an organism, can be modelled based on a regulatory and/or metabolic network. Integration of these two networks could improve our global understanding of biological mechanisms triggered by a perturbation. This study focuses on improving the modelling of the regulatory network to facilitate a possible integration with the metabolic network. Previously proposed methods that study this problem fail to deal with a real-size regulatory network, computing predictions sensitive to perturbation and quantifying the predicted species behaviour more finely. Results To address previously mentioned limitations, we develop a new method based on Answer Set Programming, MajS. It takes a regulatory network and a discrete partial set of observations as input. MajS tests the consistency between the input data, proposes minimal repairs on the network to establish consistency, and finally computes weighted and signed predictions over the network species. We tested MajS by comparing the HIF-1 signalling pathway with two gene-expression datasets. Our results show that MajS can predict 100% of unobserved species. When comparing MajS with two similar (discrete and quantitative) tools, we observed that compared with the discrete tool, MajS proposes a better coverage of the unobserved species, is more sensitive to system perturbations, and proposes predictions closer to real data. Compared to the quantitative tool, MajS provides more refined discrete predictions that agree with the dynamic proposed by the quantitative tool. Conclusions MajS is a new method to test the consistency between a regulatory network and a dataset that provides computational predictions on unobserved network species. It provides fine-grained discrete predictions by outputting the weight of the predicted sign as a piece of additional information. MajS’ output, thanks to its weight, could easily be integrated with metabolic network modelling.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3