PrognosiT: Pathway/gene set-based tumour volume prediction using multiple kernel learning

Author:

Bektaş Ayyüce Begüm,Gönen Mehmet

Abstract

Abstract Background Identification of molecular mechanisms that determine tumour progression in cancer patients is a prerequisite for developing new disease treatment guidelines. Even though the predictive performance of current machine learning models is promising, extracting significant and meaningful knowledge from the data simultaneously during the learning process is a difficult task considering the high-dimensional and highly correlated nature of genomic datasets. Thus, there is a need for models that not only predict tumour volume from gene expression data of patients but also use prior information coming from pathway/gene sets during the learning process, to distinguish molecular mechanisms which play crucial role in tumour progression and therefore, disease prognosis. Results In this study, instead of initially choosing several pathways/gene sets from an available set and training a model on this previously chosen subset of genomic features, we built a novel machine learning algorithm, PrognosiT, that accomplishes both tasks together. We tested our algorithm on thyroid carcinoma patients using gene expression profiles and cancer-specific pathways/gene sets. Predictive performance of our novel multiple kernel learning algorithm (PrognosiT) was comparable or even better than random forest (RF) and support vector regression (SVR). It is also notable that, to predict tumour volume, PrognosiT used gene expression features less than one-tenth of what RF and SVR algorithms used. Conclusions PrognosiT was able to obtain comparable or even better predictive performance than SVR and RF. Moreover, we demonstrated that during the learning process, our algorithm managed to extract relevant and meaningful pathway/gene sets information related to the studied cancer type, which provides insights about its progression and aggressiveness. We also compared gene expressions of the selected genes by our algorithm in tumour and normal tissues, and we then discussed up- and down-regulated genes selected by our algorithm while learning, which could be beneficial for determining new biomarkers.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3