GEOlimma: differential expression analysis and feature selection using pre-existing microarray data

Author:

Lu Liangqun,Townsend Kevin A.,Daigle Bernie J.

Abstract

Abstract Background Differential expression and feature selection analyses are essential steps for the development of accurate diagnostic/prognostic classifiers of complicated human diseases using transcriptomics data. These steps are particularly challenging due to the curse of dimensionality and the presence of technical and biological noise. A promising strategy for overcoming these challenges is the incorporation of pre-existing transcriptomics data in the identification of differentially expressed (DE) genes. This approach has the potential to improve the quality of selected genes, increase classification performance, and enhance biological interpretability. While a number of methods have been developed that use pre-existing data for differential expression analysis, existing methods do not leverage the identities of experimental conditions to create a robust metric for identifying DE genes. Results In this study, we propose a novel differential expression and feature selection method—GEOlimma—which combines pre-existing microarray data from the Gene Expression Omnibus (GEO) with the widely-applied Limma method for differential expression analysis. We first quantify differential gene expression across 2481 pairwise comparisons from 602 curated GEO Datasets, and we convert differential expression frequencies to DE prior probabilities. Genes with high DE prior probabilities show enrichment in cell growth and death, signal transduction, and cancer-related biological pathways, while genes with low prior probabilities were enriched in sensory system pathways. We then applied GEOlimma to four differential expression comparisons within two human disease datasets and performed differential expression, feature selection, and supervised classification analyses. Our results suggest that use of GEOlimma provides greater experimental power to detect DE genes compared to Limma, due to its increased effective sample size. Furthermore, in a supervised classification analysis using GEOlimma as a feature selection method, we observed similar or better classification performance than Limma given small, noisy subsets of an asthma dataset. Conclusions Our results demonstrate that GEOlimma is a more effective method for differential gene expression and feature selection analyses compared to the standard Limma method. Due to its focus on gene-level differential expression, GEOlimma also has the potential to be applied to other high-throughput biological datasets.

Funder

Army Research Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3