PhyloSophos: a high-throughput scientific name mapping algorithm augmented with explicit consideration of taxonomic science, and its application on natural product (NP) occurrence database processing

Author:

Cho Min Hyung,Cho Kwang-Hwi,No Kyoung Tai

Abstract

Abstract Background The standardization of biological data using unique identifiers is vital for seamless data integration, comprehensive interpretation, and reproducibility of research findings, contributing to advancements in bioinformatics and systems biology. Despite being widely accepted as a universal identifier, scientific names for biological species have inherent limitations, including lack of stability, uniqueness, and convertibility, hindering their effective use as identifiers in databases, particularly in natural product (NP) occurrence databases, posing a substantial obstacle to utilizing this valuable data for large-scale research applications. Result To address these challenges and facilitate high-throughput analysis of biological data involving scientific names, we developed PhyloSophos, a Python package that considers the properties of scientific names and taxonomic systems to accurately map name inputs to entries within a chosen reference database. We illustrate the importance of assessing multiple taxonomic databases and considering taxonomic syntax-based pre-processing using NP occurrence databases as an example, with the ultimate goal of integrating heterogeneous information into a single, unified dataset. Conclusions We anticipate PhyloSophos to significantly aid in the systematic processing of poorly digitized and curated biological data, such as biodiversity information and ethnopharmacological resources, enabling full-scale bioinformatics analysis using these valuable data resources.

Funder

Korea Institute for Advancement of Technology

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference36 articles.

1. McMurry JA, Juty N, Blomberg N, Burdett T, Conlin T, Conte N, Courtot M, Deck J, Dumontier M, Fellows DK, Gonzalez-Beltran A, Gormanns P, Grethe J, Hastings J, Hériché JK, Hermjakob H, Ison JC, Jimenez RC, Jupp S, Kunze J, Laibe C, Le Novère N, Malone J, Martin MJ, McEntyre JR, Morris C, Muilu J, Müller W, Rocca-Serra P, Sansone SA, Sariyar M, Snoep JL, Soiland-Reyes S, Stanford NJ, Swainston N, Washington N, Williams AR, Wimalaratne SM, Winfree LM, Wolstencroft K, Goble C, Mungall CJ, Haendel MA, Parkinson H. Identifiers for the 21st century: How to design, provision, and reuse persistent identifiers to maximize utility and impact of life science data. PLoS Biol. 2017;15(6): e2001414. https://doi.org/10.1371/journal.pbio.2001414.

2. Lapatas V, Stefanidakis M, Jimenez RC, Via A, Schneider MV. Data integration in biological research: an overview. J Biol Res (Thessalon). 2015;22(1):9. https://doi.org/10.1186/s40709-015-0032-5.

3. Ikeda S, Ono H, Ohta T, Chiba H, Naito Y, Moriya Y, Kawashima S, Yamamoto Y, Okamoto S, Goto S, Katayama T. TogoID: an exploratory ID converter to bridge biological datasets. Bioinformatics. 2022;38(17):4194–9. https://doi.org/10.1093/bioinformatics/btac491.

4. Guralnick RP, Cellinese N, Deck J, Pyle RL, Kunze J, Penev L, Walls R, Hagedorn G, Agosti D, Wieczorek J, Catapano T, Page RD. Community next steps for making globally unique identifiers work for biocollections data. Zookeys. 2015;494:133–54. https://doi.org/10.3897/zookeys.494.9352.

5. Kennedy JB, Kula R, Paterson T. Scientific Names Are Ambiguous as Identifiers for Biological Taxa: Their Context and Definition Are Required for Accurate Data Integration. In: Ludäscher, B., Raschid, L. (eds) Data Integration in the Life Sciences: DILS 2005: Lecture Notes in Computer Science (LNBI 3615). 2005;Springer, Berlin, pp 80–95. https://doi.org/10.1007/11530084_8

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3