Tidyproteomics: an open-source R package and data object for quantitative proteomics post analysis and visualization

Author:

Jones Jeff,MacKrell Elliot J.,Wang Ting-Yu,Lomenick Brett,Roukes Michael L.,Chou Tsui-Fen

Abstract

Abstract Background The analysis of mass spectrometry-based quantitative proteomics data can be challenging given the variety of established analysis platforms, the differences in reporting formats, and a general lack of approachable standardized post-processing analyses such as sample group statistics, quantitative variation and even data filtering. We developed tidyproteomics to facilitate basic analysis, improve data interoperability and potentially ease the integration of new processing algorithms, mainly through the use of a simplified data-object. Results The R package tidyproteomics was developed as both a framework for standardizing quantitative proteomics data and a platform for analysis workflows, containing discrete functions that can be connected end-to-end, thus making it easier to define complex analyses by breaking them into small stepwise units. Additionally, as with any analysis workflow, choices made during analysis can have large impacts on the results and as such, tidyproteomics allows researchers to string each function together in any order, select from a variety of options and in some cases develop and incorporate custom algorithms. Conclusions Tidyproteomics aims to simplify data exploration from multiple platforms, provide control over individual functions and analysis order, and serve as a tool to assemble complex repeatable processing workflows in a logical flow. Datasets in tidyproteomics are easy to work with, have a structure that allows for biological annotations to be added, and come with a framework for developing additional analysis tools. The consistent data structure and accessible analysis and plotting tools also offers a way for researchers to save time on mundane data manipulation tasks.

Funder

National Institutes of Health

Gordon and Betty Moore Foundation

Wellcome Leap Delta Tissue

Institute for Collaborative Biotechnologies

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3