Author:
Zhang Junpeng,Liu Lin,Xu Taosheng,Zhang Wu,Zhao Chunwen,Li Sijing,Li Jiuyong,Rao Nini,Le Thuc Duy
Abstract
Abstract
Background
Existing computational methods for studying miRNA regulation are mostly based on bulk miRNA and mRNA expression data. However, bulk data only allows the analysis of miRNA regulation regarding a group of cells, rather than the miRNA regulation unique to individual cells. Recent advance in single-cell miRNA-mRNA co-sequencing technology has opened a way for investigating miRNA regulation at single-cell level. However, as currently single-cell miRNA-mRNA co-sequencing data is just emerging and only available at small-scale, there is a strong need of novel methods to exploit existing single-cell data for the study of cell-specific miRNA regulation.
Results
In this work, we propose a new method, CSmiR (Cell-Specific miRNA regulation) to combine single-cell miRNA-mRNA co-sequencing data and putative miRNA-mRNA binding information to identify miRNA regulatory networks at the resolution of individual cells. We apply CSmiR to the miRNA-mRNA co-sequencing data in 19 K562 single-cells to identify cell-specific miRNA-mRNA regulatory networks for understanding miRNA regulation in each K562 single-cell. By analyzing the obtained cell-specific miRNA-mRNA regulatory networks, we observe that the miRNA regulation in each K562 single-cell is unique. Moreover, we conduct detailed analysis on the cell-specific miRNA regulation associated with the miR-17/92 family as a case study. The comparison results indicate that CSmiR is effective in predicting cell-specific miRNA targets. Finally, through exploring cell–cell similarity matrix characterized by cell-specific miRNA regulation, CSmiR provides a novel strategy for clustering single-cells and helps to understand cell–cell crosstalk.
Conclusions
To the best of our knowledge, CSmiR is the first method to explore miRNA regulation at a single-cell resolution level, and we believe that it can be a useful method to enhance the understanding of cell-specific miRNA regulation.
Funder
National Natural Science Foundation of China
Yunnan Fundamental Research Projects
Australian Research Council Discovery Grant
NHMRC Grant
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference49 articles.
1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.
2. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455:58–63.
3. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2007;96(Suppl):R40–4.
4. Le TD, Liu L, Zhang J, Liu B, Li J. From miRNA regulation to miRNA-TF co-regulation: computational approaches and challenges. Brief Bioinform. 2015;16:475–96.
5. Kern F, Backes C, Hirsch P, Fehlmann T, Hart M, Meese E, et al. What’s the target: understanding two decades of in silico microRNA-target prediction. Brief Bioinform. 2020;21(6):1999–2010.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献