Supervised topological data analysis for MALDI mass spectrometry imaging applications

Author:

Klaila GideonORCID,Vutov VladimirORCID,Stefanou AnastasiosORCID

Abstract

AbstractBackgroundMatrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) displays significant potential for applications in cancer research, especially in tumor typing and subtyping. Lung cancer is the primary cause of tumor-related deaths, where the most lethal entities are adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). Distinguishing between these two common subtypes is crucial for therapy decisions and successful patient management.ResultsWe propose a new algebraic topological framework, which obtains intrinsic information from MALDI data and transforms it to reflect topological persistence. Our framework offers two main advantages. Firstly, topological persistence aids in distinguishing the signal from noise. Secondly, it compresses the MALDI data, saving storage space and optimizes computational time for subsequent classification tasks. We present an algorithm that efficiently implements our topological framework, relying on a single tuning parameter. Afterwards, logistic regression and random forest classifiers are employed on the extracted persistence features, thereby accomplishing an automated tumor (sub-)typing process. To demonstrate the competitiveness of our proposed framework, we conduct experiments on a real-world MALDI dataset using cross-validation. Furthermore, we showcase the effectiveness of the single denoising parameter by evaluating its performance on synthetic MALDI images with varying levels of noise.ConclusionOur empirical experiments demonstrate that the proposed algebraic topological framework successfully captures and leverages the intrinsic spectral information from MALDI data, leading to competitive results in classifying lung cancer subtypes. Moreover, the framework’s ability to be fine-tuned for denoising highlights its versatility and potential for enhancing data analysis in MALDI applications.

Funder

Universität Bremen

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3