METROID: an automated method for robust quantification of subcellular fluorescence events at low SNR

Author:

Zoccoler MarceloORCID,de Oliveira Pedro X.

Abstract

Abstract Background In cell biology, increasing focus has been directed to fast events at subcellular space with the advent of fluorescent probes. As an example, voltage sensitive dyes (VSD) have been used to measure membrane potentials. Yet, even the most recently developed genetically encoded voltage sensors have demanded exhausting signal averaging through repeated experiments to quantify action potentials (AP). This analysis may be further hampered in subcellular signals defined by small regions of interest (ROI), where signal-to-noise ratio (SNR) may fall substantially. Signal processing techniques like blind source separation (BSS) are designed to separate a multichannel mixture of signals into uncorrelated or independent sources, whose potential to separate ROI signal from noise has been poorly explored. Our aims are to develop a method capable of retrieving subcellular events with minimal a priori information from noisy cell fluorescence images and to provide it as a computational tool to be readily employed by the scientific community. Results In this paper, we have developed METROID (Morphological Extraction of Transmembrane potential from Regions Of Interest Device), a new computational tool to filter fluorescence signals from multiple ROIs, whose code and graphical interface are freely available. In this tool, we developed a new ROI definition procedure to automatically generate similar-area ROIs that follow cell shape. In addition, simulations and real data analysis were performed to recover AP and electroporation signals contaminated by noise by means of four types of BSS: Principal Component Analysis (PCA), Independent Component Analysis (ICA), and two versions with discrete wavelet transform (DWT). All these strategies allowed for signal extraction at low SNR (− 10 dB) without apparent signal distortion. Conclusions We demonstrate the great capability of our method to filter subcellular signals from noisy fluorescence images in a single trial, avoiding repeated experiments. We provide this novel biomedical application with a graphical user interface at 10.6084/m9.figshare.11344046.v1, and its code and datasets are available in GitHub at https://github.com/zoccoler/metroid.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference45 articles.

1. Loew LM. Design and Use of Organic Voltage Sensitive Dyes. Vol. 859, Advances in experimental medicine and biology; 2015. p. 27–53.

2. Popovic M, Vogt K, Holthoff K, Konnerth A, Salzberg BM, Grinvald A, et al. Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines. Vol. 859, Advances in experimental medicine and biology; 2015. p. 57–101.

3. Schaffer P, Ahammer H, Müller W, Koidl B, Windisch H. Di-4-ANEPPS causes photodynamic damage to isolated cardiomyocytes. Pflügers Arch Eur J Physiol. 1994;426(6):548–51.

4. St-Pierre F, Marshall JD, Yang Y, Gong Y, Schnitzer MJ, Lin MZ. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci. 2014;17(6):884–9.

5. Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R, et al. Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J. 2006;90(10):3608–15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3