Semi-supervised prediction of protein interaction sites from unlabeled sample information

Author:

Wang Ye,Mei Changqing,Zhou Yuming,Wang Yan,Zheng Chunhou,Zhen Xiao,Xiong Yan,Chen Peng,Zhang Jun,Wang Bing

Abstract

Abstract Background The recognition of protein interaction sites is of great significance in many biological processes, signaling pathways and drug designs. However, most sites on protein sequences cannot be defined as interface or non-interface sites because only a small part of protein interactions had been identified, which will cause the lack of prediction accuracy and generalization ability of predictors in protein interaction sites prediction. Therefore, it is necessary to effectively improve prediction performance of protein interaction sites using large amounts of unlabeled data together with small amounts of labeled data and background knowledge today. Results In this work, three semi-supervised support vector machine–based methods are proposed to improve the performance in the protein interaction sites prediction, in which the information of unlabeled protein sites can be involved. Herein, five features related with the evolutionary conservation of amino acids are extracted from HSSP database and Consurf Sever, i.e., residue spatial sequence spectrum, residue sequence information entropy and relative entropy, residue sequence conserved weight and residual Base evolution rate, to represent the residues within the protein sequence. Then three predictors are built for identifying the interface residues from protein surface using three types of semi-supervised support vector machine algorithms. Conclusion The experimental results demonstrated that the semi-supervised approaches can effectively improve prediction performance of protein interaction sites when unlabeled information is involved into the predictors and one of them can achieve the best prediction performance, i.e., the accuracy of 70.7%, the sensitivity of 62.67% and the specificity of 78.72%, respectively. With comparison to the existing studies, the semi-supervised models show the improvement of the predication performance.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3