Analysis of RNA-Seq data using self-supervised learning for vital status prediction of colorectal cancer patients

Author:

Padegal Girivinay,Rao Murali Krishna,Boggaram Ravishankar Om Amitesh,Acharya Sathwik,Athri Prashanth,Srinivasa Gowri

Abstract

Abstract Background RNA sequencing (RNA-Seq) is a technique that utilises the capabilities of next-generation sequencing to study a cellular transcriptome i.e., to determine the amount of RNA at a given time for a given biological sample. The advancement of RNA-Seq technology has resulted in a large volume of gene expression data for analysis. Results Our computational model (built on top of TabNet) is first pretrained on an unlabelled dataset of multiple types of adenomas and adenocarcinomas and later fine-tuned on the labelled dataset, showing promising results in the context of the estimation of the vital status of colorectal cancer patients. We achieve a final cross-validated (ROC-AUC) Score of 0.88 by using multiple modalities of data. Conclusion The results of this study demonstrate that self-supervised learning methods pretrained on a vast corpus of unlabelled data outperform traditional supervised learning methods such as XGBoost, Neural Networks, and Decision Trees that have been prevalent in the tabular domain. The results of this study are further boosted by the inclusion of multiple modalities of data pertaining to the patients in question. We find that genes such as RBM3, GSPT1, MAD2L1, and others important to the computation model’s prediction task obtained through model interpretability corroborate with pathological evidence in current literature.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference42 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Potential of GSPT1 as a novel target for glioblastoma therapy;Cell Death & Disease;2024-08-08

2. Predicting Pedestrian Involvement in Fatal Crashes Using a TabNet Deep Learning Model;Proceedings of the 16th ACM SIGSPATIAL International Workshop on Computational Transportation Science;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3