BRANEnet: embedding multilayer networks for omics data integration

Author:

Jagtap Surabhi,Pirayre Aurélie,Bidard Frédérique,Duval Laurent,Malliaros Fragkiskos D.

Abstract

AbstractBackgroundGene expression is regulated at different molecular levels, including chromatin accessibility, transcription, RNA maturation, and transport. These regulatory mechanisms have strong connections with cellular metabolism. In order to study the cellular system and its functioning, omics data at each molecular level can be generated and efficiently integrated. Here, we proposeBRANEnet, a novel multi-omics integration framework for multilayer heterogeneous networks.BRANEnetis an expressive, scalable, and versatile method to learn node embeddings, leveraging random walk information within a matrix factorization framework. Our goal is to efficiently integrate multi-omics data to study different regulatory aspects of multilayered processes that occur in organisms. We evaluate our framework using multi-omics data ofSaccharomyces cerevisiae, a well-studied yeast model organism.ResultsWe testBRANEneton transcriptomics (RNA-seq) and targeted metabolomics (NMR) data for wild-type yeast strain during a heat-shock time course of 0, 20, and 120 min. Our framework learns features for differentially expressed bio-molecules showing heat stress response. We demonstrate the applicability of the learned features for targeted omics inference tasks: transcription factor (TF)-target prediction, integrated omics network (ION) inference, and module identification. The performance ofBRANEnetis compared to existing network integration methods. Our model outperforms baseline methods by achieving high prediction scores for a variety of downstream tasks.

Funder

ANR

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3