Author:
Kane Michael J.,King Casey,Esserman Denise,Latham Nancy K.,Greene Erich J.,Ganz David A.
Abstract
AbstractThis paper presents novel datasets providing numerical representations of ICD-10-CM codes by generating description embeddings using a large language model followed by a dimension reduction via autoencoder. The embeddings serve as informative input features for machine learning models by capturing relationships among categories and preserving inherent context information. The model generating the data was validated in two ways. First, the dimension reduction was validated using an autoencoder, and secondly, a supervised model was created to estimate the ICD-10-CM hierarchical categories. Results show that the dimension of the data can be reduced to as few as 10 dimensions while maintaining the ability to reproduce the original embeddings, with the fidelity decreasing as the reduced-dimension representation decreases. Multiple compression levels are provided, allowing users to choose as per their requirements, download and use without any other setup. The readily available datasets of ICD-10-CM codes are anticipated to be highly valuable for researchers in biomedical informatics, enabling more advanced analyses in the field. This approach has the potential to significantly improve the utility of ICD-10-CM codes in the biomedical domain.
Funder
National Institutes of Health
Yale Center for Clinical Investigation, Yale School of Medicine
Yale Claude D. Pepper Center
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Embedding Representations of Diagnosis Codes for Outlier Payment Detection;2023 International Conference on Machine Learning and Applications (ICMLA);2023-12-15