A compressed large language model embedding dataset of ICD 10 CM descriptions

Author:

Kane Michael J.,King Casey,Esserman Denise,Latham Nancy K.,Greene Erich J.,Ganz David A.

Abstract

AbstractThis paper presents novel datasets providing numerical representations of ICD-10-CM codes by generating description embeddings using a large language model followed by a dimension reduction via autoencoder. The embeddings serve as informative input features for machine learning models by capturing relationships among categories and preserving inherent context information. The model generating the data was validated in two ways. First, the dimension reduction was validated using an autoencoder, and secondly, a supervised model was created to estimate the ICD-10-CM hierarchical categories. Results show that the dimension of the data can be reduced to as few as 10 dimensions while maintaining the ability to reproduce the original embeddings, with the fidelity decreasing as the reduced-dimension representation decreases. Multiple compression levels are provided, allowing users to choose as per their requirements, download and use without any other setup. The readily available datasets of ICD-10-CM codes are anticipated to be highly valuable for researchers in biomedical informatics, enabling more advanced analyses in the field. This approach has the potential to significantly improve the utility of ICD-10-CM codes in the biomedical domain.

Funder

National Institutes of Health

Yale Center for Clinical Investigation, Yale School of Medicine

Yale Claude D. Pepper Center

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Embedding Representations of Diagnosis Codes for Outlier Payment Detection;2023 International Conference on Machine Learning and Applications (ICMLA);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3