A novel gene functional similarity calculation model by utilizing the specificity of terms and relationships in gene ontology

Author:

Tian Zhen,Fang Haichuan,Ye Yangdong,Zhu ZhenfengORCID

Abstract

Abstract Background Recently, with the foundation and development of gene ontology (GO) resources, numerous works have been proposed to compute functional similarity of genes and achieved series of successes in some research fields. Focusing on the calculation of the information content (IC) of terms is the main idea of these methods, which is essential for measuring functional similarity of genes. However, most approaches have some deficiencies, especially when measuring the IC of both GO terms and their corresponding annotated term sets. To this end, measuring functional similarity of genes accurately is still challenging. Results In this article, we proposed a novel gene functional similarity calculation method, which especially encapsulates the specificity of terms and edges (STE). The proposed method mainly contains three steps. Firstly, a novel computing model is put forward to compute the IC of terms. This model has the ability to exploit the specific structural information of GO terms. Secondly, the IC of term sets are computed by capturing the genetic structure between the terms contained in the set. Lastly, we measure the gene functional similarity according to the IC overlap ratio of the corresponding annotated genes sets. The proposed method accurately measures the IC of not only GO terms but also the annotated term sets by leveraging the specificity of edges in the GO graph. Conclusions We conduct experiments on gene functional classification in biological pathways, gene expression datasets, and protein-protein interaction datasets. Extensive experimental results show the better performances of our proposed STE against several baseline methods.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3