A signature of immune-related genes correlating with clinical prognosis and immune microenvironment in sepsis

Author:

Chen Zhong-Hua,Zhang Wen-Yuan,Ye Hui,Guo Yu-Qian,Zhang Kai,Fang Xiang-Ming

Abstract

Abstract Background Immune-related genes (IRGs) remain poorly understood in their function in the onset and progression of sepsis. Methods GSE65682 was obtained from the Gene Expression Omnibus database. The IRGs associated with survival were screened for subsequent modeling using univariate Cox regression analysis and least absolute shrinkage and selection operator in the training cohort. Then, we assessed the reliability of the 7 IRGs signature's independent predictive value in the training and validation cohorts following the creation of a signature applying multivariable Cox regression analysis. After that, we utilized the E-MTAB-4451 external dataset in order to do an independent validation of the prognostic signature. Finally, the CIBERSORT algorithm and single-sample gene set enrichment analysis was utilized to investigate and characterize the properties of the immune microenvironment. Results Based on 7 IRGs signature, patients could be separated into low-risk and high-risk groups. Patients in the low-risk group had a remarkably increased 28-day survival compared to those in the high-risk group (P < 0.001). In multivariable Cox regression analyses, the risk score calculated by this signature was an independent predictor of 28-day survival (P < 0.001). The signature's predictive ability was confirmed by receiver operating characteristic curve analysis with the area under the curve reaching 0.876 (95% confidence interval 0.793–0.946). Moreover, both the validation set and the external dataset demonstrated that the signature had strong clinical prediction performance. In addition, patients in the high-risk group were characterized by a decreased neutrophil count and by reduced inflammation-promoting function. Conclusion We developed a 7 IRGs signature as a novel prognostic marker for predicting sepsis patients’ 28-day survival, indicating possibilities for individualized reasonable resource distribution of intensive care unit.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3