Machine learning-based predictions of dietary restriction associations across ageing-related genes

Author:

Vega Magdaleno Gustavo Daniel,Bespalov Vladislav,Zheng Yalin,Freitas Alex A.,de Magalhaes Joao Pedro

Abstract

Abstract Background Dietary restriction (DR) is the most studied pro-longevity intervention; however, a complete understanding of its underlying mechanisms remains elusive, and new research directions may emerge from the identification of novel DR-related genes and DR-related genetic features. Results This work used a Machine Learning (ML) approach to classify ageing-related genes as DR-related or NotDR-related using 9 different types of predictive features: PathDIP pathways, two types of features based on KEGG pathways, two types of Protein–Protein Interactions (PPI) features, Gene Ontology (GO) terms, Genotype Tissue Expression (GTEx) expression features, GeneFriends co-expression features and protein sequence descriptors. Our findings suggested that features biased towards curated knowledge (i.e. GO terms and biological pathways), had the greatest predictive power, while unbiased features (mainly gene expression and co-expression data) have the least predictive power. Moreover, a combination of all the feature types diminished the predictive power compared to predictions based on curated knowledge. Feature importance analysis on the two most predictive classifiers mostly corroborated existing knowledge and supported recent findings linking DR to the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) signalling pathway and G protein-coupled receptors (GPCR). We then used the two strongest combinations of feature type and ML algorithm to predict DR-relatedness among ageing-related genes currently lacking DR-related annotations in the data, resulting in a set of promising candidate DR-related genes (GOT2, GOT1, TSC1, CTH, GCLM, IRS2 and SESN2) whose predicted DR-relatedness remain to be validated in future wet-lab experiments. Conclusions This work demonstrated the strong potential of ML-based techniques to identify DR-associated features as our findings are consistent with literature and recent discoveries. Although the inference of new DR-related mechanistic findings based solely on GO terms and biological pathways was limited due to their knowledge-driven nature, the predictive power of these two features types remained useful as it allowed inferring new promising candidate DR-related genes.

Funder

Consejo Nacional de Ciencia y Tecnología

Universidad de Guadalajara

Leverhulme Trust

Biotechnology and Biological Sciences Research Council

Wellcome Trust

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3