Predict multi-type drug–drug interactions in cold start scenario

Author:

Liu Zun,Wang Xing-Nan,Yu Hui,Shi Jian-Yu,Dong Wen-Min

Abstract

Abstract Background Prediction of drug–drug interactions (DDIs) can reveal potential adverse pharmacological reactions between drugs in co-medication. Various methods have been proposed to address this issue. Most of them focus on the traditional link prediction between drugs, however, they ignore the cold-start scenario, which requires the prediction between known drugs having approved DDIs and new drugs having no DDI. Moreover, they're restricted to infer whether DDIs occur, but are not able to deduce diverse DDI types, which are important in clinics. Results In this paper, we propose a cold start prediction model for both single-type and multiple-type drug–drug interactions, referred to as CSMDDI. CSMDDI predict not only whether two drugs trigger pharmacological reactions but also what reaction types they induce in the cold start scenario. We implement several embedding methods in CSMDDI, including SVD, GAE, TransE, RESCAL and compare it with the state-of-the-art multi-type DDI prediction method DeepDDI and DDIMDL to verify the performance. The comparison shows that CSMDDI achieves a good performance of DDI prediction in the case of both the occurrence prediction and the multi-type reaction prediction in cold start scenario. Conclusions Our approach is able to predict not only conventional binary DDIs but also what reaction types they induce in the cold start scenario. More importantly, it learns a mapping function who can bridge the drugs attributes to their network embeddings to predict DDIs. The main contribution of CSMDDI contains the development of a generalized framework to predict the single-type and multi-type of DDIs in the cold start scenario, as well as the implementations of several embedding models for both single-type and multi-type of DDIs. The dataset and source code can be accessed at https://github.com/itsosy/csmddi.

Funder

National Nature Science Foundation of China

Shaanxi Provincial Key Research & Development Program, China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3