Identifying GPCR-drug interaction based on wordbook learning from sequences

Author:

Wang Pu,Huang Xiaotong,Qiu Wangren,Xiao XuanORCID

Abstract

Abstract Background G protein-coupled receptors (GPCRs) mediate a variety of important physiological functions, are closely related to many diseases, and constitute the most important target family of modern drugs. Therefore, the research of GPCR analysis and GPCR ligand screening is the hotspot of new drug development. Accurately identifying the GPCR-drug interaction is one of the key steps for designing GPCR-targeted drugs. However, it is prohibitively expensive to experimentally ascertain the interaction of GPCR-drug pairs on a large scale. Therefore, it is of great significance to predict the interaction of GPCR-drug pairs directly from the molecular sequences. With the accumulation of known GPCR-drug interaction data, it is feasible to develop sequence-based machine learning models for query GPCR-drug pairs. Results In this paper, a new sequence-based method is proposed to identify GPCR-drug interactions. For GPCRs, we use a novel bag-of-words (BoW) model to extract sequence features, which can extract more pattern information from low-order to high-order and limit the feature space dimension. For drug molecules, we use discrete Fourier transform (DFT) to extract higher-order pattern information from the original molecular fingerprints. The feature vectors of two kinds of molecules are concatenated and input into a simple prediction engine distance-weighted K-nearest-neighbor (DWKNN). This basic method is easy to be enhanced through ensemble learning. Through testing on recently constructed GPCR-drug interaction datasets, it is found that the proposed methods are better than the existing sequence-based machine learning methods in generalization ability, even an unconventional method in which the prediction performance was further improved by post-processing procedure (PPP). Conclusions The proposed methods are effective for GPCR-drug interaction prediction, and may also be potential methods for other target-drug interaction prediction, or protein-protein interaction prediction. In addition, the new proposed feature extraction method for GPCR sequences is the modified version of the traditional BoW model and may be useful to solve problems of protein classification or attribute prediction. The source code of the proposed methods is freely available for academic research at https://github.com/wp3751/GPCR-Drug-Interaction.

Funder

Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3