How to balance the bioinformatics data: pseudo-negative sampling

Author:

Zhang Yongqing,Qiao Shaojie,Lu Rongzhao,Han Nan,Liu Dingxiang,Zhou Jiliu

Abstract

Abstract Background Imbalanced datasets are commonly encountered in bioinformatics classification problems, that is, the number of negative samples is much larger than that of positive samples. Particularly, the data imbalance phenomena will make us underestimate the performance of the minority class of positive samples. Therefore, how to balance the bioinformatic data becomes a very challenging and difficult problem. Results In this study, we propose a new data sampling approach, called pseudo-negative sampling, which can be effectively applied to handle the case that: negative samples greatly dominate positive samples. Specifically, we design a supervised learning method based on a max-relevance min-redundancy criterion beyond Pearson correlation coefficient (MMPCC), which is used to choose pseudo-negative samples from the negative samples and view them as positive samples. In addition, MMPCC uses an incremental searching technique to select optimal pseudo-negative samples to reduce the computation cost. Consequently, the discovered pseudo-negative samples have strong relevance to positive samples and less redundancy to negative ones. Conclusions To validate the performance of our method, we conduct experiments base on four UCI datasets and three real bioinformatics datasets. According to the experimental results, we clearly observe the performance of MMPCC is better than other sampling methods in terms of Sensitivity, Specificity, Accuracy and the Mathew’s Correlation Coefficient. This reveals that the pseudo-negative samples are particularly helpful to solve the imbalance dataset problem. Moreover, the gain of Sensitivity from the minority samples with pseudo-negative samples grows with the improvement of prediction accuracy on all dataset.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3