Author:
Wang Zixuan,Zhou Yi,Takagi Tatsuya,Song Jiangning,Tian Yu-Shi,Shibuya Tetsuo
Abstract
Abstract
Background
Microarray data have been widely utilized for cancer classification. The main characteristic of microarray data is “large p and small n” in that data contain a small number of subjects but a large number of genes. It may affect the validity of the classification. Thus, there is a pressing demand of techniques able to select genes relevant to cancer classification.
Results
This study proposed a novel feature (gene) selection method, Iso-GA, for cancer classification. Iso-GA hybrids the manifold learning algorithm, Isomap, in the genetic algorithm (GA) to account for the latent nonlinear structure of the gene expression in the microarray data. The Davies–Bouldin index is adopted to evaluate the candidate solutions in Isomap and to avoid the classifier dependency problem. Additionally, a probability-based framework is introduced to reduce the possibility of genes being randomly selected by GA. The performance of Iso-GA was evaluated on eight benchmark microarray datasets of cancers. Iso-GA outperformed other benchmarking gene selection methods, leading to good classification accuracy with fewer critical genes selected.
Conclusions
The proposed Iso-GA method can effectively select fewer but critical genes from microarray data to achieve competitive classification performance.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献