Predicting the pathogenicity of bacterial genomes using widely spread protein families

Author:

Naor-Hoffmann Shaked,Svetlitsky Dina,Sal-Man Neta,Orenstein Yaron,Ziv-Ukelson Michal

Abstract

AbstractBackgroundThe human body is inhabited by a diverse community of commensal non-pathogenic bacteria, many of which are essential for our health. By contrast, pathogenic bacteria have the ability to invade their hosts and cause a disease. Characterizing the differences between pathogenic and commensal non-pathogenic bacteria is important for the detection of emerging pathogens and for the development of new treatments. Previous methods for classification of bacteria as pathogenic or non-pathogenic used either raw genomic reads or protein families as features. Using protein families instead of reads provided a better interpretability of the resulting model. However, the accuracy of protein-families-based classifiers can still be improved.ResultsWe developed a wide scope pathogenicity classifier (WSPC), a new protein-content-based machine-learning classification model. We trained WSPC on a newly curated dataset of 641 bacterial genomes, where each genome belongs to a different species. A comparative analysis we conducted shows that WSPC outperforms existing models on two benchmark test sets. We observed that the most discriminative protein-family features in WSPC are widely spread among bacterial species. These features correspond to proteins that are involved in the ability of bacteria to survive and replicate during an infection, rather than proteins that are directly involved in damaging or invading the host.

Funder

Israel Science Foundation

Israel Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3