Author:
Naor-Hoffmann Shaked,Svetlitsky Dina,Sal-Man Neta,Orenstein Yaron,Ziv-Ukelson Michal
Abstract
AbstractBackgroundThe human body is inhabited by a diverse community of commensal non-pathogenic bacteria, many of which are essential for our health. By contrast, pathogenic bacteria have the ability to invade their hosts and cause a disease. Characterizing the differences between pathogenic and commensal non-pathogenic bacteria is important for the detection of emerging pathogens and for the development of new treatments. Previous methods for classification of bacteria as pathogenic or non-pathogenic used either raw genomic reads or protein families as features. Using protein families instead of reads provided a better interpretability of the resulting model. However, the accuracy of protein-families-based classifiers can still be improved.ResultsWe developed a wide scope pathogenicity classifier (WSPC), a new protein-content-based machine-learning classification model. We trained WSPC on a newly curated dataset of 641 bacterial genomes, where each genome belongs to a different species. A comparative analysis we conducted shows that WSPC outperforms existing models on two benchmark test sets. We observed that the most discriminative protein-family features in WSPC are widely spread among bacterial species. These features correspond to proteins that are involved in the ability of bacteria to survive and replicate during an infection, rather than proteins that are directly involved in damaging or invading the host.
Funder
Israel Science Foundation
Israel Ministry of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献