Prioritizing candidate diseases-related metabolites based on literature and functional similarity

Author:

Wang Yongtian,Juan Liran,Peng Jiajie,Zang Tianyi,Wang Yadong

Abstract

Abstract Background As the terminal products of cellular regulatory process, functional related metabolites have a close relationship with complex diseases, and are often associated with the same or similar diseases. Therefore, identification of disease related metabolites play a critical role in understanding comprehensively pathogenesis of disease, aiming at improving the clinical medicine. Considering that a large number of metabolic markers of diseases need to be explored, we propose a computational model to identify potential disease-related metabolites based on functional relationships and scores of referred literatures between metabolites. First, obtaining associations between metabolites and diseases from the Human Metabolome database, we calculate the similarities of metabolites based on modified recommendation strategy of collaborative filtering utilizing the similarities between diseases. Next, a disease-associated metabolite network (DMN) is built with similarities between metabolites as weight. To improve the ability of identifying disease-related metabolites, we introduce scores of text mining from the existing database of chemicals and proteins into DMN and build a new disease-associated metabolite network (FLDMN) by fusing functional associations and scores of literatures. Finally, we utilize random walking with restart (RWR) in this network to predict candidate metabolites related to diseases. Results We construct the disease-associated metabolite network and its improved network (FLDMN) with 245 diseases, 587 metabolites and 28,715 disease-metabolite associations. Subsequently, we extract training sets and testing sets from two different versions of the Human Metabolome database and assess the performance of DMN and FLDMN on 19 diseases, respectively. As a result, the average AUC (area under the receiver operating characteristic curve) of DMN is 64.35%. As a further improved network, FLDMN is proven to be successful in predicting potential metabolic signatures for 19 diseases with an average AUC value of 76.03%. Conclusion In this paper, a computational model is proposed for exploring metabolite-disease pairs and has good performance in predicting potential metabolites related to diseases through adequate validation. This result suggests that integrating literature and functional associations can be an effective way to construct disease associated metabolite network for prioritizing candidate diseases-related metabolites.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3