Deep learning for cancer type classification and driver gene identification

Author:

Zeng Zexian,Mao Chengsheng,Vo Andy,Li Xiaoyu,Nugent Janna Ore,Khan Seema A.,Clare Susan E.,Luo YuanORCID

Abstract

Abstract Background Genetic information is becoming more readily available and is increasingly being used to predict patient cancer types as well as their subtypes. Most classification methods thus far utilize somatic mutations as independent features for classification and are limited by study power. We aim to develop a novel method to effectively explore the landscape of genetic variants, including germline variants, and small insertions and deletions for cancer type prediction. Results We proposed DeepCues, a deep learning model that utilizes convolutional neural networks to unbiasedly derive features from raw cancer DNA sequencing data for disease classification and relevant gene discovery. Using raw whole-exome sequencing as features, germline variants and somatic mutations, including insertions and deletions, were interactively amalgamated for feature generation and cancer prediction. We applied DeepCues to a dataset from TCGA to classify seven different types of major cancers and obtained an overall accuracy of 77.6%. We compared DeepCues to conventional methods and demonstrated a significant overall improvement (p < 0.001). Strikingly, using DeepCues, the top 20 breast cancer relevant genes we have identified, had a 40% overlap with the top 20 known breast cancer driver genes. Conclusion Our results support DeepCues as a novel method to improve the representational resolution of DNA sequencings and its power in deriving features from raw sequences for cancer type prediction, as well as discovering new cancer relevant genes.

Funder

National Institutes of Health

Lynn Sage Cancer Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3