Predicting antifreeze proteins with weighted generalized dipeptide composition and multi-regression feature selection ensemble

Author:

Wang ShunfangORCID,Deng Lin,Xia Xinnan,Cao Zicheng,Fei Yu

Abstract

Abstract Background Antifreeze proteins (AFPs) are a group of proteins that inhibit body fluids from growing to ice crystals and thus improve biological antifreeze ability. It is vital to the survival of living organisms in extremely cold environments. However, little research is performed on sequences feature extraction and selection for antifreeze proteins classification in the structure and function prediction, which is of great significance. Results In this paper, to predict the antifreeze proteins, a feature representation of weighted generalized dipeptide composition (W-GDipC) and an ensemble feature selection based on two-stage and multi-regression method (LRMR-Ri) are proposed. Specifically, four feature selection algorithms: Lasso regression, Ridge regression, Maximal information coefficient and Relief are used to select the feature sets, respectively, which is the first stage of LRMR-Ri method. If there exists a common feature subset among the above four sets, it is the optimal subset; otherwise we use Ridge regression to select the optimal subset from the public set pooled by the four sets, which is the second stage of LRMR-Ri. The LRMR-Ri method combined with W-GDipC was performed both on the antifreeze proteins dataset (binary classification), and on the membrane protein dataset (multiple classification). Experimental results show that this method has good performance in support vector machine (SVM), decision tree (DT) and stochastic gradient descent (SGD). The values of ACC, RE and MCC of LRMR-Ri and W-GDipC with antifreeze proteins dataset and SVM classifier have reached as high as 95.56%, 97.06% and 0.9105, respectively, much higher than those of each single method: Lasso, Ridge, Mic and Relief, nearly 13% higher than single Lasso for ACC. Conclusion The experimental results show that the proposed LRMR-Ri and W-GDipC method can significantly improve the accuracy of antifreeze proteins prediction compared with other similar single feature methods. In addition, our method has also achieved good results in the classification and prediction of membrane proteins, which verifies its widely reliability to a certain extent.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Yunnan Province

Training Plan for Young and Middle-aged Academic Leaders of Yunnan Province

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3