CirPred, the first structure modeling and linker design system for circularly permuted proteins

Author:

Chen Teng-Ruei,Lin Yen-Cheng,Huang Yu-Wei,Chen Chih-Chieh,Lo Wei-ChengORCID

Abstract

Abstract Background This work aims to help develop new protein engineering techniques based on a structural rearrangement phenomenon called circular permutation (CP), equivalent to connecting the native termini of a protein followed by creating new termini at another site. Although CP has been applied in many fields, its implementation is still costly because of inevitable trials and errors. Results Here we present CirPred, a structure modeling and termini linker design method for circularly permuted proteins. Compared with state-of-the-art protein structure modeling methods, CirPred is the only one fully capable of both circularly-permuted modeling and traditional co-linear modeling. CirPred performs well when the permutant shares low sequence identity with the native protein and even when the permutant adopts a different conformation from the native protein because of three-dimensional (3D) domain swapping. Linker redesign experiments demonstrated that the linker design algorithm of CirPred achieved subangstrom accuracy. Conclusions The CirPred system is capable of (1) predicting the structure of circular permutants, (2) designing termini linkers, (3) performing traditional co-linear protein structure modeling, and (4) identifying the CP-induced occurrence of 3D domain swapping. This method is supposed helpful for broadening the application of CP, and its web server is available at http://10.life.nctu.edu.tw/CirPred/ and http://lo.life.nctu.edu.tw/CirPred/.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3