MMGAT: a graph attention network framework for ATAC-seq motifs finding

Author:

Wu Xiaotian,Hou Wenju,Zhao Ziqi,Huang Lan,Sheng Nan,Yang Qixing,Zhang Shuangquan,Wang Yan

Abstract

Abstract Background Motif finding in Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) data is essential to reveal the intricacies of transcription factor binding sites (TFBSs) and their pivotal roles in gene regulation. Deep learning technologies including convolutional neural networks (CNNs) and graph neural networks (GNNs), have achieved success in finding ATAC-seq motifs. However, CNN-based methods are limited by the fixed width of the convolutional kernel, which makes it difficult to find multiple transcription factor binding sites with different lengths. GNN-based methods has the limitation of using the edge weight information directly, makes it difficult to aggregate the neighboring nodes' information more efficiently when representing node embedding. Results To address this challenge, we developed a novel graph attention network framework named MMGAT, which employs an attention mechanism to adjust the attention coefficients among different nodes. And then MMGAT finds multiple ATAC-seq motifs based on the attention coefficients of sequence nodes and k-mer nodes as well as the coexisting probability of k-mers. Our approach achieved better performance on the human ATAC-seq datasets compared to existing tools, as evidenced the highest scores on the precision, recall, F1_score, ACC, AUC, and PRC metrics, as well as finding 389 higher quality motifs. To validate the performance of MMGAT in predicting TFBSs and finding motifs on more datasets, we enlarged the number of the human ATAC-seq datasets to 180 and newly integrated 80 mouse ATAC-seq datasets for multi-species experimental validation. Specifically on the mouse ATAC-seq dataset, MMGAT also achieved the highest scores on six metrics and found 356 higher-quality motifs. To facilitate researchers in utilizing MMGAT, we have also developed a user-friendly web server named MMGAT-S that hosts the MMGAT method and ATAC-seq motif finding results. Conclusions The advanced methodology MMGAT provides a robust tool for finding ATAC-seq motifs, and the comprehensive server MMGAT-S makes a significant contribution to genomics research. The open-source code of MMGAT can be found at https://github.com/xiaotianr/MMGAT, and MMGAT-S is freely available at https://www.mmgraphws.com/MMGAT-S/.

Funder

the Young Scientists Fund of the National Natural Science Foundation of China

the National Natural Science Foundation of China

the Development Project of Jilin Province of China

the Jilin Provincial Key Laboratory of Big Data Intelligent Cognition

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3