HISS: Snakemake-based workflows for performing SMRT-RenSeq assembly, AgRenSeq and dRenSeq for the discovery of novel plant disease resistance genes

Author:

Adams Thomas M.ORCID,Smith Moray,Wang Yuhan,Brown Lynn H.,Bayer Micha M.,Hein Ingo

Abstract

Abstract Background In the ten years since the initial publication of the RenSeq protocol, the method has proved to be a powerful tool for studying disease resistance in plants and providing target genes for breeding programmes. Since the initial publication of the methodology, it has continued to be developed as new technologies have become available and the increased availability of computing power has made new bioinformatic approaches possible. Most recently, this has included the development of a k-mer based association genetics approach, the use of PacBio HiFi data, and graphical genotyping with diagnostic RenSeq. However, there is not yet a unified workflow available and researchers must instead configure approaches from various sources themselves. This makes reproducibility and version control a challenge and limits the ability to perform these analyses to those with bioinformatics expertise. Results Here we present HISS, consisting of three workflows which take a user from raw RenSeq reads to the identification of candidates for disease resistance genes. These workflows conduct the assembly of enriched HiFi reads from an accession with the resistance phenotype of interest. A panel of accessions both possessing and lacking the resistance are then used in an association genetics approach (AgRenSeq) to identify contigs positively associated with the resistance phenotype. Candidate genes are then identified on these contigs and assessed for their presence or absence in the panel with a graphical genotyping approach that uses dRenSeq. These workflows are implemented via Snakemake, a python-based workflow manager. Software dependencies are either shipped with the release or handled with conda. All code is freely available and is distributed under the GNU GPL-3.0 license. Conclusions HISS provides a user-friendly, portable, and easily customised approach for identifying novel disease resistance genes in plants. It is easily installed with all dependencies handled internally or shipped with the release and represents a significant improvement in the ease of use of these bioinformatics analyses.

Funder

Rural and Environment Science and Analytical Services Division

Biotechnology and Biological Sciences Research Council

Royal Society

Chinese Government Scholarship

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3