Iam hiQ—a novel pair of accuracy indices for imputed genotypes

Author:

Rosenberger AlbertORCID,Tozzi Viola,Bickeböller Heike,Hung Rayjean J.,Christiani David C.,Caporaso Neil E.,Liu Geoffrey,Bojesen Stig E.,Le Marchand Loic,Albanes Demetrios,Aldrich Melinda C.,Tardon Adonina,Fernández-Tardón Guillermo,Rennert Gad,Field John K.,Davies Mike,Liloglou Triantafillos,Kiemeney Lambertus A.,Lazarus Philip,Haugen Aage,Zienolddiny Shanbeh,Lam Stephen,Schabath Matthew B.,Andrew Angeline S.,Duell Eric J.,Arnold Susanne M.,Brunnström Hans,Melander Olle,Goodman Gary E.,Chen Chu,Doherty Jennifer A.,Teare Marion Dawn,Cox Angela,Woll Penella J.,Risch Angela,Muley Thomas R.,Johansson Mikael,Brennan Paul,Landi Maria Teresa,Shete Sanjay S.,Amos Christopher I.,

Abstract

Abstract Background Imputation of untyped markers is a standard tool in genome-wide association studies to close the gap between directly genotyped and other known DNA variants. However, high accuracy with which genotypes are imputed is fundamental. Several accuracy measures have been proposed and some are implemented in imputation software, unfortunately diversely across platforms. In the present paper, we introduce Iam hiQ, an independent pair of accuracy measures that can be applied to dosage files, the output of all imputation software. Iam (imputation accuracy measure) quantifies the average amount of individual-specific versus population-specific genotype information in a linear manner. hiQ (heterogeneity in quantities of dosages) addresses the inter-individual heterogeneity between dosages of a marker across the sample at hand. Results Applying both measures to a large case–control sample of the International Lung Cancer Consortium (ILCCO), comprising 27,065 individuals, we found meaningful thresholds for Iam and hiQ suitable to classify markers of poor accuracy. We demonstrate how Manhattan-like plots and moving averages of Iam and hiQ can be useful to identify regions enriched with less accurate imputed markers, whereas these regions would by missed when applying the accuracy measure info (implemented in IMPUTE2). Conclusion We recommend using Iam hiQ additional to other accuracy scores for variant filtering before stepping into the analysis of imputed GWAS data.

Funder

National Institutes of Health

Fred Hutchinson Cancer Research Center

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3