Abstract
Abstract
Background
Diseases like cancer will lead to changes in gene expression, and it is relevant to identify key regulatory genes that can be linked directly to these changes. This can be done by computing a Regulatory Impact Factor (RIF) score for relevant regulators. However, this computation is based on estimating correlated patterns of gene expression, often Pearson correlation, and an assumption about a set of specific regulators, normally transcription factors. This study explores alternative measures of correlation, using the Fisher and Sobolev metrics, and an extended set of regulators, including epigenetic regulators and long non-coding RNAs (lncRNAs). Data on prostate cancer have been used to explore the effect of these modifications.
Results
A tool for computation of RIF scores with alternative correlation measures and extended sets of regulators was developed and tested on gene expression data for prostate cancer. The study showed that the Fisher and Sobolev metrics lead to improved identification of well-documented regulators of gene expression in prostate cancer, and the sets of identified key regulators showed improved overlap with previously defined gene sets of relevance to cancer. The extended set of regulators lead to identification of several interesting candidates for further studies, including lncRNAs. Several key processes were identified as important, including spindle assembly and the epithelial-mesenchymal transition (EMT).
Conclusions
The study has shown that using alternative metrics of correlation can improve the performance of tools based on correlation of gene expression in genomic data. The Fisher and Sobolev metrics should be considered also in other correlation-based applications.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献