Adaptiveness of RGB-image derived algorithms in the measurement of fractional vegetation coverage

Author:

Song Chuangye,Sang Jiawen,Zhang Lin,Liu Huiming,Wu Dongxiu,Yuan Weiying,Huang Chong

Abstract

Abstract Background Fractional vegetation coverage (FVC) is a crucial parameter in determining vegetation structure. Automatic measurement of FVC using digital images captured by mobile smart devices is a potential direction for future research on field survey methods in plant ecology, and this algorithm is crucial for accurate FVC measurement. However, there is a lack of insight into the influence of illumination on the accuracy of FVC measurements. Therefore, the main objective of this research is to assess the adaptiveness and performance of different algorithms under varying light conditions for FVC measurements and to deepen our understanding of the influence of illumination on FVC measurement. Methods and results Based on a literature survey, we selected four algorithms that have been reported to have high accuracy in automatic FVC measurements. The first algorithm (Fun01) identifies green plants based on the combination of $$R/G$$ R / G , $$B/G$$ B / G , and $$ExG$$ ExG ($$R$$ R , $$G$$ G , and $$B$$ B are the actual pixel digital numbers from the images based on each RGB channel, $$ExG$$ ExG is the abbreviation of the Excess Green index), the second algorithm (Fun02) is a decision tree that uses color properties to discriminate plants from the background, the third algorithm (Fun03) uses $$ExG-ExR$$ E x G - E x R ($$ExR$$ ExR is the abbreviation of the Excess Red index) to recognize plants in the image, and the fourth algorithm (Fun04) uses $$ExG$$ ExG and $$O{\text{tsu}}$$ O tsu to separate the plants from the background. $$Otsu$$ Otsu is an algorithm used to determine a threshold to transform the image into a binary image for the vegetation and background. We measured the FVC of several surveyed quadrats using these four algorithms under three scenarios, namely overcast sky, solar forenoon, and solar noon. FVC values obtained using the Photoshop-assisted manual identification method were used as a reference to assess the accuracy of the four algorithms selected. Results indicate that under the overcast sky scenario, Fun01 was more accurate than the other algorithms and the MAPE (mean absolute percentage error), BIAS, relBIAS (relative BIAS), RMSE (root mean square error), and relRMSE (relative RMSE) are 8.68%, 1.3, 3.97, 3.13, and 12.33%, respectively. Under the scenario of the solar forenoon, Fun02 (decision tree) was more accurate than other algorithms, and the MAPE, BIAS, relBIAS, RMSE, and relRMSE are 22.70%, − 2.86, − 7.70, 5.00, and 41.23%. Under the solar noon scenario, Fun02 was also more accurate than the other algorithms, and the MAPE, BIAS, relBIAS, RMSE, and relRMSE are 20.60%, − 6.39, − 20.67, 7.30, and 24.49%, respectively. Conclusions Given that each algorithm has its own optimal application scenario, among the four algorithms selected, Fun01 (the combination of $$R/G$$ R / G , $$B/G$$ B / G , and $$ExG$$ ExG ) can be recommended for measuring FVC on cloudy days. Fun02 (decision tree) is more suitable for measuring the FVC on sunny days. However, it considerably underestimates the FVC in most cases. We expect the findings of this study to serve as a useful reference for automatic vegetation cover measurements.

Funder

Ministry of Sciences and Technology the People’s Republic of China

Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3