Integrative analysis of time course metabolic data and biomarker discovery

Author:

Jendoubi TakouaORCID,Ebbels Timothy M. D.

Abstract

Abstract Background Metabolomics time-course experiments provide the opportunity to understand the changes to an organism by observing the evolution of metabolic profiles in response to internal or external stimuli. Along with other omic longitudinal profiling technologies, these techniques have great potential to uncover complex relations between variations across diverse omic variables and provide unique insights into the underlying biology of the system. However, many statistical methods currently used to analyse short time-series omic data are i) prone to overfitting, ii) do not fully take into account the experimental design or iii) do not make full use of the multivariate information intrinsic to the data or iv) are unable to uncover multiple associations between different omic data. The model we propose is an attempt to i) overcome overfitting by using a weakly informative Bayesian model, ii) capture experimental design conditions through a mixed-effects model, iii) model interdependencies between variables by augmenting the mixed-effects model with a conditional auto-regressive (CAR) component and iv) identify potential associations between heterogeneous omic variables by using a horseshoe prior. Results We assess the performance of our model on synthetic and real datasets and show that it can outperform comparable models for metabolomic longitudinal data analysis. In addition, our proposed method provides the analyst with new insights on the data as it is able to identify metabolic biomarkers related to treatment, infer perturbed pathways as a result of treatment and find significant associations with additional omic variables. We also show through simulation that our model is fairly robust against inaccuracies in metabolite assignments. On real data, we demonstrate that the number of profiled metabolites slightly affects the predictive ability of the model. Conclusions Our single model approach to longitudinal analysis of metabolomics data provides an approach simultaneously for integrative analysis and biomarker discovery. In addition, it lends better interpretation by allowing analysis at the pathway level. An accompanying package for the model has been developed using the probabilistic programming language . The package offers user-friendly functions for simulating data, fitting the model, assessing model fit and postprocessing the results. The main aim of the package is to offer freely accessible resources for integrative longitudinal analysis for metabolomics scientists and various visualization functions easy-to-use for applied researchers to interpret results.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3