A knowledge graph approach to predict and interpret disease-causing gene interactions

Author:

Renaux Alexandre,Terwagne Chloé,Cochez Michael,Tiddi Ilaria,Nowé Ann,Lenaerts Tom

Abstract

Abstract Background Understanding the impact of gene interactions on disease phenotypes is increasingly recognised as a crucial aspect of genetic disease research. This trend is reflected by the growing amount of clinical research on oligogenic diseases, where disease manifestations are influenced by combinations of variants on a few specific genes. Although statistical machine-learning methods have been developed to identify relevant genetic variant or gene combinations associated with oligogenic diseases, they rely on abstract features and black-box models, posing challenges to interpretability for medical experts and impeding their ability to comprehend and validate predictions. In this work, we present a novel, interpretable predictive approach based on a knowledge graph that not only provides accurate predictions of disease-causing gene interactions but also offers explanations for these results. Results We introduce BOCK, a knowledge graph constructed to explore disease-causing genetic interactions, integrating curated information on oligogenic diseases from clinical cases with relevant biomedical networks and ontologies. Using this graph, we developed a novel predictive framework based on heterogenous paths connecting gene pairs. This method trains an interpretable decision set model that not only accurately predicts pathogenic gene interactions, but also unveils the patterns associated with these diseases. A unique aspect of our approach is its ability to offer, along with each positive prediction, explanations in the form of subgraphs, revealing the specific entities and relationships that led to each pathogenic prediction. Conclusion Our method, built with interpretability in mind, leverages heterogenous path information in knowledge graphs to predict pathogenic gene interactions and generate meaningful explanations. This not only broadens our understanding of the molecular mechanisms underlying oligogenic diseases, but also presents a novel application of knowledge graphs in creating more transparent and insightful predictors for genetic research.

Funder

European Regional Development Fund

Innoviris

HORIZON EUROPE Framework Programme

Vrije Universiteit Brussel

Horizon 2020

Fonds De La Recherche Scientifique - FNRS

Fonds Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3