Author:
Yu Myeong-Sang,Lee Jingyu,Lee Yongmin,Na Dokyun
Abstract
Abstract
Background
Abnormal activation of human nuclear hormone receptors disrupts endocrine systems and thereby affects human health. There have been machine learning-based models to predict androgen receptor agonist activity. However, the models were constructed based on limited numerical features such as molecular descriptors and fingerprints.
Result
In this study, instead of the numerical features, 2-D chemical structure images of compounds were used to build an androgen receptor toxicity prediction model. The images may provide unknown features that were not represented by conventional numerical features. As a result, the new strategy resulted in a construction of highly accurate prediction model: Mathews correlation coefficient (MCC) of 0.688, positive predictive value (PPV) of 0.933, sensitivity of 0.519, specificity of 0.998, and overall accuracy of 0.981 in 10-fold cross-validation. Validation on a test dataset showed MCC of 0.370, sensitivity of 0.211, specificity of 0.991, PPV of 0.882, and overall accuracy of 0.801. Our chemical image-based prediction model outperforms conventional models based on numerical features.
Conclusion
Our constructed prediction model successfully classified molecular images into androgen receptor agonists or inactive compounds. The result indicates that 2-D molecular mimetic diagram would be used as another feature to construct molecular activity prediction models.
Funder
Chung-Ang University
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献