Enhancing the drug ontology with semantically-rich representations of National Drug Codes and RxNorm unique concept identifiers

Author:

Bona Jonathan P.,Brochhausen Mathias,Hogan William R.

Abstract

Abstract Background The Drug Ontology (DrOn) is a modular, extensible ontology of drug products, their ingredients, and their biological activity created to enable comparative effectiveness and health services researchers to query National Drug Codes (NDCs) that represent products by ingredient, by molecular disposition, by therapeutic disposition, and by physiological effect (e.g., diuretic). It is based on the RxNorm drug terminology maintained by the U.S. National Library of Medicine, and on the Chemical Entities of Biological Interest ontology. Both national drug codes (NDCs) and RxNorm unique concept identifiers (RXCUIS) can undergo changes over time that can obfuscate their meaning when these identifiers occur in historic data. We present a new approach to modeling these entities within DrOn that will allow users of DrOn working with historic prescription data to more easily and correctly interpret that data. Results We have implemented a full accounting of national drug codes and RxNorm unique concept identifiers as information content entities, and of the processes involved in managing their creation and changes. This includes an OWL file that implements and defines the classes necessary to model these entities. A separate file contains an instance-level prototype in OWL that demonstrates the feasibility of this approach to representing NDCs and RXCUIs and the processes of managing them by retrieving and representing several individual NDCs, both active and inactive, and the RXCUIs to which they are connected. We also demonstrate how historic information about these identifiers in DrOn can be easily retrieved using a simple SPARQL query. Conclusions An accurate model of how these identifiers operate in reality is a valuable addition to DrOn that enhances its usefulness as a knowledge management resource for working with historic data.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enriching the FIDEO ontology with food-drug interactions from online knowledge sources;Journal of Biomedical Semantics;2024-03-04

2. Improving the Quality and Utility of Electronic Health Record Data through Ontologies;Standards;2023-09-15

3. ReOnto: A Neuro-Symbolic Approach for Biomedical Relation Extraction;Machine Learning and Knowledge Discovery in Databases: Research Track;2023

4. The impact of artificial intelligence methods on drug design;Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development;2023

5. A Comprehensive and Scientifically Accurate Pharmaceutical Knowledge Ontology based on Multi-source Data;Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3