Distance correlation application to gene co-expression network analysis

Author:

Hou Jie,Ye XiufenORCID,Feng Weixing,Zhang Qiaosheng,Han Yatong,Liu Yusong,Li Yu,Wei Yufen

Abstract

Abstract Background To construct gene co-expression networks, it is necessary to evaluate the correlation between different gene expression profiles. However, commonly used correlation metrics, including both linear (such as Pearson’s correlation) and monotonic (such as Spearman’s correlation) dependence metrics, are not enough to observe the nature of real biological systems. Hence, introducing a more informative correlation metric when constructing gene co-expression networks is still an interesting topic. Results In this paper, we test distance correlation, a correlation metric integrating both linear and non-linear dependence, with other three typical metrics (Pearson’s correlation, Spearman’s correlation, and maximal information coefficient) on four different arrays (macrophage and liver) and RNA-seq (cervical cancer and pancreatic cancer) datasets. Among all the metrics, distance correlation is distribution free and can provide better performance on complex relationships and anti-outlier. Furthermore, distance correlation is applied to Weighted Gene Co-expression Network Analysis (WGCNA) for constructing a gene co-expression network analysis method which we named Distance Correlation-based Weighted Gene Co-expression Network Analysis (DC-WGCNA). Compared with traditional WGCNA, DC-WGCNA can enhance the result of enrichment analysis and improve the module stability. Conclusions Distance correlation is better at revealing complex biological relationships between gene profiles compared with other correlation metrics, which contribute to more meaningful modules when analyzing gene co-expression networks. However, due to the high time complexity of distance correlation, the implementation requires more computer memory.

Funder

National Natural Science Foundation of China

Development Project of Applied Technology in Harbin

HEU Fundamental Research Funds for the Central University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3