Benchmarking for biomedical natural language processing tasks with a domain specific ALBERT

Author:

Naseem Usman,Dunn Adam G.,Khushi Matloob,Kim Jinman

Abstract

AbstractBackgroundThe abundance of biomedical text data coupled with advances in natural language processing (NLP) is resulting in novel biomedical NLP (BioNLP) applications. These NLP applications, or tasks, are reliant on the availability of domain-specific language models (LMs) that are trained on a massive amount of data. Most of the existing domain-specific LMs adopted bidirectional encoder representations from transformers (BERT) architecture which has limitations, and their generalizability is unproven as there is an absence of baseline results among common BioNLP tasks.ResultsWe present 8 variants of BioALBERT, a domain-specific adaptation of a lite bidirectional encoder representations from transformers (ALBERT), trained on biomedical (PubMed and PubMed Central) and clinical (MIMIC-III) corpora and fine-tuned for 6 different tasks across 20 benchmark datasets. Experiments show that a large variant of BioALBERT trained on PubMed outperforms the state-of-the-art on named-entity recognition (+ 11.09% BLURB score improvement), relation extraction (+ 0.80% BLURB score), sentence similarity (+ 1.05% BLURB score), document classification (+ 0.62% F1-score), and question answering (+ 2.83% BLURB score). It represents a new state-of-the-art in 5 out of 6 benchmark BioNLP tasks.ConclusionsThe large variant of BioALBERT trained on PubMed achieved a higher BLURB score than previous state-of-the-art models on 5 of the 6 benchmark BioNLP tasks. Depending on the task, 5 different variants of BioALBERT outperformed previous state-of-the-art models on 17 of the 20 benchmark datasets, showing that our model is robust and generalizable in the common BioNLP tasks. We have made BioALBERT freely available which will help the BioNLP community avoid computational cost of training and establish a new set of baselines for future efforts across a broad range of BioNLP tasks.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference37 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3