Accurate classification of white blood cells by coupling pre-trained ResNet and DenseNet with SCAM mechanism

Author:

Chen Hua,Liu Juan,Hua Chunbing,Feng Jing,Pang Baochuan,Cao Dehua,Li Cheng

Abstract

Abstract Background Via counting the different kinds of white blood cells (WBCs), a good quantitative description of a person’s health status is obtained, thus forming the critical aspects for the early treatment of several diseases. Thereby, correct classification of WBCs is crucial. Unfortunately, the manual microscopic evaluation is complicated, time-consuming, and subjective, so its statistical reliability becomes limited. Hence, the automatic and accurate identification of WBCs is of great benefit. However, the similarity between WBC samples and the imbalance and insufficiency of samples in the field of medical computer vision bring challenges to intelligent and accurate classification of WBCs. To tackle these challenges, this study proposes a deep learning framework by coupling the pre-trained ResNet and DenseNet with SCAM (spatial and channel attention module) for accurately classifying WBCs. Results In the proposed network, ResNet and DenseNet enables information reusage and new information exploration, respectively, which are both important and compatible for learning good representations. Meanwhile, the SCAM module sequentially infers attention maps from two separate dimensions of space and channel to emphasize important information or suppress unnecessary information, further enhancing the representation power of our model for WBCs to overcome the limitation of sample similarity. Moreover, the data augmentation and transfer learning techniques are used to handle the data of imbalance and insufficiency. In addition, the mixup approach is adopted for modeling the vicinity relation across training samples of different categories to increase the generalizability of the model. By comparing with five representative networks on our developed LDWBC dataset and the publicly available LISC, BCCD, and Raabin WBC datasets, our model achieves the best overall performance. We also implement the occlusion testing by the gradient-weighted class activation mapping (Grad-CAM) algorithm to improve the interpretability of our model. Conclusion The proposed method has great potential for application in intelligent and accurate classification of WBCs.

Funder

the Major Projects of Technological Innovation in Hubei Province

the Frontier Projects of Wuhan for Application Foundation

the Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3