Author:
Tu Gang,Wang Xuan,Xia Rong,Song Bowen
Abstract
Abstract
Background
N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotic cells that plays a crucial role in regulating various biological processes, and dysregulation of m6A status is involved in multiple human diseases including cancer contexts. A number of prediction frameworks have been proposed for high-accuracy identification of putative m6A sites, however, none have targeted for direct prediction of tissue-conserved m6A modified residues from non-conserved ones at base-resolution level.
Results
We report here m6A-TCPred, a computational tool for predicting tissue-conserved m6A residues using m6A profiling data from 23 human tissues. By taking advantage of the traditional sequence-based characteristics and additional genome-derived information, m6A-TCPred successfully captured distinct patterns between potentially tissue-conserved m6A modifications and non-conserved ones, with an average AUROC of 0.871 and 0.879 tested on cross-validation and independent datasets, respectively.
Conclusion
Our results have been integrated into an online platform: a database holding 268,115 high confidence m6A sites with their conserved information across 23 human tissues; and a web server to predict the conserved status of user-provided m6A collections. The web interface of m6A-TCPred is freely accessible at: www.rnamd.org/m6ATCPred.
Funder
XJTLU Key Program Special Fund
Scientific Research Foundation of Nanjing University of Chinese Medicine
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献