Author:
Hu Jianqiao,Luo Sai,Tian Ming,Ye Adam Yongxin
Abstract
Abstract
Background
High-throughput sequencing is a powerful tool that is extensively applied in biological studies. However, sequencers may produce low-quality bases, leading to ambiguous bases, ‘N’s. PCR duplicates introduced in library preparation are conventionally removed in genomics studies, and several deduplication tools have been developed for this purpose. Two identical reads may appear different due to ambiguous bases and the existing tools cannot address ‘N’s correctly or efficiently.
Results
Here we proposed and implemented TrieDedup, which uses the trie (prefix tree) data structure to compare and store sequences. TrieDedup can handle ambiguous base ‘N’s, and efficiently deduplicate at the level of raw sequences. We also reduced its memory usage by approximately 20% by implementing restrictedDict in Python. We benchmarked the performance of the algorithm and showed that TrieDedup can deduplicate reads up to 270-fold faster than pairwise comparison at a cost of 32-fold higher memory usage.
Conclusions
The TrieDedup algorithm may facilitate PCR deduplication, barcode or UMI assignment, and repertoire diversity analysis of large-scale high-throughput sequencing datasets with its ultra-fast algorithm that can account for ambiguous bases due to sequencing errors.
Funder
National Institutes of Health
Bill & Melinda Gates Foundation Investment, United States
Howard Hughes Medical Institute
Boston Children's Hospital
Publisher
Springer Science and Business Media LLC