Predicting combinations of drugs by exploiting graph embedding of heterogeneous networks

Author:

Song Fei,Tan Shiyin,Dou Zengfa,Liu Xiaogang,Ma Xiaoke

Abstract

Abstract Background Drug combination, offering an insight into the increased therapeutic efficacy and reduced toxicity, plays an essential role in the therapy of many complex diseases. Although significant efforts have been devoted to the identification of drugs, the identification of drug combination is still a challenge. The current algorithms assume that the independence of feature selection and drug prediction procedures, which may result in an undesirable performance. Results To address this issue, we develop a novel Semi-supervised Heterogeneous Network Embedding algorithm (called SeHNE) to predict the combination patterns of drugs by exploiting the graph embedding. Specifically, the ATC similarity of drugs, drug–target, and protein–protein interaction networks are integrated to construct the heterogeneous networks. Then, SeHNE jointly learns drug features by exploiting the topological structure of heterogeneous networks and predicting drug combination. One distinct advantage of SeHNE is that features of drugs are extracted under the guidance of classification, which improves the quality of features, thereby enhancing the performance of prediction of drugs. Experimental results demonstrate that the proposed algorithm is more accurate than state-of-the-art methods on various data, implying that the joint learning is promising for the identification of drug combination. Conclusions The proposed model and algorithm provide an effective strategy for the prediction of combinatorial patterns of drugs, implying that the graph-based drug prediction is promising for the discovery of drugs.

Funder

NFSC

Natural Science Foundation of Qinghai

Key Research and Development Program of Gansu

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3