Liver tumor segmentation in CT volumes using an adversarial densely connected network

Author:

Chen Lei,Song Hong,Wang Chi,Cui Yutao,Yang Jian,Hu Xiaohua,Zhang Le

Abstract

Abstract Background Malignant liver tumor is one of the main causes of human death. In order to help physician better diagnose and make personalized treatment schemes, in clinical practice, it is often necessary to segment and visualize the liver tumor from abdominal computed tomography images. Due to the large number of slices in computed tomography sequence, developing an automatic and reliable segmentation method is very favored by physicians. However, because of the noise existed in the scan sequence and the similar pixel intensity of liver tumors with their surrounding tissues, besides, the size, position and shape of tumors also vary from one patient to another, automatic liver tumor segmentation is still a difficult task. Results We perform the proposed algorithm to the Liver Tumor Segmentation Challenge dataset and evaluate the segmentation results. Experimental results reveal that the proposed method achieved an average Dice score of 68.4% for tumor segmentation by using the designed network, and ASD, MSD, VOE and RVD improved from 27.8 to 21, 147 to 124, 0.52 to 0.46 and 0.69 to 0.73, respectively after performing adversarial training strategy, which proved the effectiveness of the proposed method. Conclusions The testing results show that the proposed method achieves improved performance, which corroborated the adversarial training based strategy can achieve more accurate and robustness results on liver tumor segmentation task.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CotepRes-Net: An efficient U-Net based deep learning method of liver segmentation from Computed Tomography images;Biomedical Signal Processing and Control;2024-02

2. Medical image segmentation using UNet algorithm;WOMEN IN PHYSICS: 7th IUPAP International Conference on Women in Physics;2024

3. A deep-learning approach for segmentation of liver tumors in magnetic resonance imaging using UNet++;BMC Cancer;2023-11-03

4. Segmenting the Liver Tumor from Computed Tomography Using 3D-UNet with IDFOA Model;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

5. Clinical impact of artificial intelligence-based solutions on imaging of the pancreas and liver;World Journal of Gastroenterology;2023-03-07

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3