Semantic interoperability: ontological unpacking of a viral conceptual model

Author:

Bernasconi AnnaORCID,Guizzardi Giancarlo,Pastor Oscar,Storey Veda C.

Abstract

Abstract Background Genomics and virology are unquestionably important, but complex, domains being investigated by a large number of scientists. The need to facilitate and support work within these domains requires sharing of databases, although it is often difficult to do so because of the different ways in which data is represented across the databases. To foster semantic interoperability, models are needed that provide a deep understanding and interpretation of the concepts in a domain, so that the data can be consistently interpreted among researchers. Results In this research, we propose the use of conceptual models to support semantic interoperability among databases and assess their ontological clarity to support their effective use. This modeling effort is illustrated by its application to the Viral Conceptual Model (VCM) that captures and represents the sequencing of viruses, inspired by the need to understand the genomic aspects of the virus responsible for COVID-19. For achieving semantic clarity on the VCM, we leverage the “ontological unpacking” method, a process of ontological analysis that reveals the ontological foundation of the information that is represented in a conceptual model. This is accomplished by applying the stereotypes of the OntoUML ontology-driven conceptual modeling language.As a result, we propose a new OntoVCM, an ontologically grounded model, based on the initial VCM, but with guaranteed interoperability among the data sources that employ it. Conclusions We propose and illustrate how the unpacking of the Viral Conceptual Model resolves several issues related to semantic interoperability, the importance of which is recognized by the “I” in FAIR principles. The research addresses conceptual uncertainty within the domain of SARS-CoV-2 data and knowledge.The method employed provides the basis for further analyses of complex models currently used in life science applications, but lacking ontological grounding, subsequently hindering the interoperability needed for scientists to progress their research.

Funder

University of Twente

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3