Automatic echocardiographic anomalies interpretation using a stacked residual-dense network model

Author:

Nurmaini Siti,Sapitri Ade Iriani,Tutuko Bambang,Rachmatullah Muhammad Naufal,Rini Dian Palupi,Darmawahyuni Annisa,Firdaus Firdaus,Mandala Satria,Nova Ria,Bernolian Nuswil

Abstract

AbstractEchocardiographic interpretation during the prenatal or postnatal period is important for diagnosing cardiac septal abnormalities. However, manual interpretation can be time consuming and subject to human error. Automatic segmentation of echocardiogram can support cardiologists in making an initial interpretation. However, such a process does not always provide straightforward information to make a complete interpretation. The segmentation process only identifies the region of cardiac septal abnormality, whereas complete interpretation should determine based on the position of defect. In this study, we proposed a stacked residual-dense network model to segment the entire region of cardiac and classifying their defect positions to generate automatic echocardiographic interpretation. We proposed the generalization model with incorporated two modalities: prenatal and postnatal echocardiography. To further evaluate the effectiveness of our model, its performance was verified by five cardiologists. We develop a pipeline process using 1345 echocardiograms for training data and 181 echocardiograms for unseen data from prospective patients acquired during standard clinical practice at Muhammad Hoesin General Hospital in Indonesia. As a result, the proposed model produced of 58.17% intersection over union (IoU), 75.75% dice similarity coefficient (DSC), and 76.36% mean average precision (mAP) for the validation data. Using unseen data, we achieved 42.39% IoU, 55.72% DSC, and 51.04% mAP. Further, the classification of defect positions using unseen data had approximately 92.27% accuracy, 94.33% specificity, and 92.05% sensitivity. Finally, our proposed model is validated with human expert with varying Kappa value. On average, these results hold promise of increasing suitability in clinical practice as a supporting diagnostic tool for establishing the diagnosis.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3